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Abstract

We propose a simple parallel algorithm for finding a blocking flow in an acyclic network. On
an n-vertex, rn-arc network, our algorithm runs in 0(n log n) time and 0(nm) space using an m-
processor EREW PRAM. A consequence of our algorithm is an 0(n 2 (log n)log(nC))-time, O(nm)-
space, m-processor algorithm for the minimum-cost circulation problem, on a network with integer
arc capacities of magnitude at most C.

1 Terminology

In this paper we use the following definitions. Let G = (V, E) be an acyclic directed graph with vertex

set V of size n and1 arc s.t E of size r. For ease in stating time bounds, we assume that m > n - i.

Define E-' = {(w,v)I(v,w) E E} and E+ = EUE - 1 . For any vertex w we denote by E(w) the set of

vertices adjacent out from w, E(w) = {X(w, X) E E}, and by E-1(w) the set of vertices adjocent into

w, F-(w) = {vf(vw) E E}. Graph G is layerpd if each vertex v can be assigned an integer layer L(r)

such that L(w) = L(v) + I for every arc (v,w).

Graph G is a network if it has two distinguished vertices, a source s and a sink t, and a nonneg-
ative real-valued capacity u(v,w) on every arc (v,w). A preflow on a network is a nonnegative real-

valued function f on the arcs such that f(v,w) < u(v,w) for every arc (v,w) and EvEE-1(w) f(vw) >

,ZEE(w) f(w,X) for every vertex w 5 s. The quantity e(w) = 3
t cn-(v..) f(v,w)- 2 E(w) f(w,x) is

called the excess at vertex w. A preflow f is a flow if e(w) = 0 for every vertex w € {s, t}.

The residual capacity of an arc (v, w) with respect to a preflow f is uf(v, w) = u(v, w) - f(v,v).

Arc (v, w) is saturated if uf(v, w) = 0 and residual if u1 (v, w) > 0. A preflow is blocking if every path

in G from s to t contains at least one saturated arc, i.e., there is no path of residual arcs from s to 1.

Our model of parallel computation is the exclusive-read, exclusive-write parallel random-access ma-
chine (EREW PRAM) [7]. We shall also briefly consider distributed computation models [10).

2 Perspective

The problem of finding a blocking flow in an acyclic network arises as a subproblem in computing

maximum flows and in computing minimum-cost circulations. Specifically, Dinic [5] showed that the

maximum flow problem can be solved by solving a sequence ol 0(n) blocking flow problems on layered

networks. We [12, 13, 14) have shown that the minimum-cost circulation problem can be solved by solv-

ing a sequence of O(nlog(nC)) blocking flow problems on acyclic but not necessarily layered networks.

In the latter bound, C is the maximum absolute value of an arc cost; all arc costs are assumed to be

integers.

Motivated by Dinic's discovery, several researchers have developed algorithms for finding a blocking
flow in a lavprpd network [2. 5, 9; 9. 16, 18, 21, 22, 23, 24]. Many of these algorithms, e.g. (5, 9, 16, 18, 22,

23, 24), work with the same asymptotic efficieT, v on arbitrary acyclic networks as on layered networks.
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The asymptotically fastest known sequential algorithm is described in [14]; it runs in 0(mlog(n2 /m))

time and 0(m) space, for an arbitrary acyclic network.

Of the cited algorithms, only one is a parallel algorithm, that of Shiloach and Vishkin [21], which

runs in 0(n log n) time and 0(n 2 ) space (U. Vishkin, private communication, 1986) using n processors.

The Shiloach-Vishkin algorithm is stated for layered networks. Although we previously claimed that
their method extends to arbitrary acyclic networks without loss of asymptotic efficiency[12, 13], this

does not seem to be true; their running time analysis breaks down in the general case. Thus their
algorithm cannot be used as an efficient subroutine in sol,.'intr minimum-cost circulation problems.

Our goal in this paper is to devise a fast parallel blocking flow algorithm for arbitrary acyclic

net ;vc;ks. In the next section we describe a mpthod based on th, concept ,f nf .. rnq: w,, cll thi

method the atomic method. In Section 4 we give a parallel implementation of the atomic method.

This implementation runs in 0(nlog n) time and 0(nm) space using m processors. As a corollary, we

obtain an 0(n 2 (logn)log(nC))-time, 0(nm)-space, m-processor parallel algorithm for the minimum-

cost circulation problem. (See [12, 13, 14].)

3 The Atomic Method

In this section we describe a method for finding blocking flows in acyclic networks that is based on the

concept of atoms (defined below). Atoms have been used previously in the analysis of maximum flow

algorithms by Goldberg [11] arid Cheriyan and Maheshwari [1].

Our general method is the same as that used by Karzarov [16] and later by others, e.g. [2, 8, 14,

21, 24]. The algorithm begins with a blocking preflow and moves flow excess through the network while

maintaining a blocking preflow, until eventually this flow movement produces a blocking flow. The
algorithm maintains a partition of the vertices into two states: blocked and unblocked. We call an arc

(v,w) admissible if it is residual and w is unblocked. The algorithm blocks a vertex v when it discovers

that none of the arcs leaving v is admissible; once v is blocked, every path from v to t contains a
saturated arc. Excess on blocked vertices is returned from whence it came, by decreasing the fjov onj
appropriate incoming arcs.

To keep track of the detailed flow movements, the algorithm maintains a partition of the flow excess

into atoms. Consider a time during an execution of the algorithm. An atom is a maximal quantity of
excess that has moved in exactly the same way so far. An atom a at a vertex v consists of an amount
of excess denoted by size(a); the vertex v is denoted by position(a). An atom located at a vertex other

than s or t is called active.

Associated with an atom a at a vertex v is a path of arcs in E+ from s to v that the atom followed

in arriving at v. This path is denoted by trace(a). Also associated with a is a simple path from s to
v, denoted by path(a), of arcs in E through which the atom moved forward but not backward in the

course of reaching v from s. The relationship between trace(a) and path(a) is that path(a) contains each

arc (v,w) such that (v,w) but not (w,v) is on trace(a). The intuition behind the algorithm is that
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procedure Process-Atom(a).
begin

w *- position(a);
if w is unblocked then

if 3 (w, x) : u1 (w, z) > 0 and x is unblocked then begin
if size(a) > uf(w,z) then begin

[split a)
create a new atom a';
path(a) - pafh(a');
size(a') -- size(a)- uf(w, x);
size(a) 4- (w, x);

end;
position(a) -;
append (w, x) to path(a);
ul (w, x) f- uj (w, x) - size(a);

end
else mark w as blocked;

if w is blocked then begin
(v, w) - last arc on path(a);
posilion(a) - v;
delete (v, w) from path(a);
move a to v;
update path(a);
uj(v, u) - uj(v, w) + size(a);

end;

end.

Figure 1: The Process-Atom procedure. Note that the flow is maintained implicitly as a difference between
u and uf.

each atom does a depth-first search from s in an attempt to reach t. The graph being searched changes
dynamically as arcs become saturated and w"rtices become blocked.

During initialization, the algorithm saturates every arc (s, v) leaving the source, creating at each
neighbor v of s an atom of size u(s, v) and trace (s, v). At each iteration, the algorithm selects an active
atom a and processes it as described in Figure 1. Let w = position(a). If w is not blocked, the algorithm
tries to move a forward along an arc with positive residual capacity. If no such arc exists, w becomes
blocked. If there is such an arc, the algorithm picks one, say (w,x). If size(a) > uf(w,x), atom a is
split into two parts. One part, of size equal to size(a) - u1 (w, x), gets a new name a'. The other part,
of size equal to u1 (w, x), retains the name a. Atom a' remains at vertex w to be processed later; atom
a moves to vertex z. Finally, if atom a has not moved (i.e., vertex w is blocked), atom a is returned to
the vertex, say v, from which it first reached w.

Note that an atom can move in two ways: forward from w to x or backward from w to v. In the
former case, w is unblocked and f(w,x) increases. In the latter case, w is blocked and f(v, w) decreases.
An atom can move backward from w to v only if at a previous time it moved forward from v to w.
Thus the flow through an arc never becomes negative. During the course of the algorithm, for any arc
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(w, x), the flow on (w, x) first increases, until. x becomes blocked, after which the flow decreases.

Note that we have not specified the way in which we select an atom to be processed next. In the

parallel ki:olemcntation of the algorithm, all active atoms, and atoms arising from them by iterated
splitting, are processed concurrently. In the sequential implementation, any constant-time sclection rule

leads to an O(nm) time bound. For example, one can maintain the set of active atoms as a queue or

a stack. Alternatively, at each vertex one can maintain a list of the atoms located at the vertex, and

keep a queue or a stack of vertices with nonempty lists of atoms.

We begin our analysis of the algorithm by bounding the number of atoms.

Lemma 3.1 The total number of atoms created during an execution of the atomic algorithm is at most m.

Proof: We claim that each increase in the number of atoms corresponds to a- arc saturation. Atoms

created during initialization are charged to the saturation of the corresponding arcs. An ',-- cr.natc-2 b,"
splitting in procedure Process-Atom is charged to the saturation of the arc (w, x) in the same executi c

of the procedure. Thus the claim is true. Since each arc becomes saturated only once, the lemma is

true. I

The next lemma gives the key property of the algorithm. Intuitively, the lemma holds because the
trace of an atom is a partial traversal of a tree rooted at s.

Lemma 3.2 Consider an atom a at some time during execution of the algorithm. Then the length of the

trace of a is at most 2n - 3.

Proof: An atom a only moves backward from a vertex w {s, t) once w is blocked. Just after a moves

backward from w, w is not on path(a), and a never visits w again. It follows that, for each vertex w $ t,

Efltrace(a) contains at most one arc of the form (v, w); and, for each vertex w {s. t}, E - 1 ltrace(a)

contains at most one arc of the form (w, v). This gives a bound of 2n - 3 on the l'ngth of trace(a). I

We define phases of the algorithm as follows. Initialization is phase 1. Phase i for i > 1 begins

at the end of phase i - 1 and ends as soon as every atom that existed at the end of the phase i - 1,
and every atom created by splitting since the end of phase i - 1, has moved at least one step. Since

every atom moves (either forward of backward) at least once during each phase, we have the following

corollary, which is crucial for the analysis of parallel versions of the atomic method.

Corollary 3.3 The number of phases during an execution of the algorithm is at most 2n - 3.

To obtain an efficient implementation of the algorithm, we maintain the path of each atom as a
stack of arcs.'. When an atom moves forward along an arc, the arc is pushed on top of the stack. To
move an atom backward, we move it to the tail vertex of the top-of-stack arc and pop the stack.

Using stacks allows the algorithm to move atoms forward and backward in constant time. Splitting
an atom, however, requires copying a stack. For ordinary stacks, this requires linear time. A very simple

'If the network has nc, multiple arcs, it is sufficient to maintain stacks of vertices on the paths.
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implementation of persistent stacks [19] (see also [6]) allows the copy operation, as well as the push and
pop operations, to be done in constant time. In combination with Lemmas 3.1 and 3.2, this fact gives
the following result.

Theorem 3.4 The atomic algorithm, implemented using persistent stacks, runs in O(nm) time.

4 A Parallel Implementation

In this section we describe a parallel implementation of the atomic method. The parallel implementation
works in pulses; at each pulse, every atom, including those arising by splitting, moves either forward or
backward or both. Thus each pulse completes at least one phase, where a phase is as defined in Section
3.

The parallel implementation consists of the following four steps:

Step 1 (initialize). For each arc (s, v), set f(s, v) = u(s, v). Create an atom at v of size f(s, v) and having stack
containing only (s, v). For each arc (v, w) with v 5 s, set f(v, w) = 0. Block vertex s and unblock all other
vertices.

Step 2 (push flow forward). For each unblocked vertex v, V {s, t}, in parallel, do the following.

Arbitrarily order the atoms at w, say a,, a2, ... , ak, and the admissible arcs (w, x), say (w, x1), (w, x2)....

(x,w). For 1 < j < k, compute a cumulative size S(j) = Z"j=l size(a1 ). For each 1 < j < 1, compute a

cumulative residual capacity R(j) = _= l uj(w, ri). Assign the atoms ai to the admissible arcs (w, x,) as
follows:

1. If S(i) - size(ai) > R(j) - uj(w,xi) and S(i) < R(j), assign all of atom a, to (w,Xj).

2. If S(i) - size(a,) > R(j) - uf(w, z) and S(i) > R(j), assign an amount R(j) - S(i) + size(a,) of atom
ai to (w, zi).

3. If S(i) - size(ai) < R(j) - ul(w, xj) and S(i) > R(j), assign an amount uj(w, xj) of atom a, to

(w, x,).-

4. If S(i) - size(a,) < R(j) - u1 (w,zj) and S(i) < R(j), assign an amount S(i) - R(j) + uj(w, zj) of

atom a, to (w, x, ).

(This assignment associates with each admissible arc a total amount of excess less than or equal to its
residual capacity. At most one such arc receives an amount that is positive but less than its residual
capacity. The total amount assigned to admissible arcs equals the minimum of the excess at u and the
sum of the residual capacities of the admissible arcs (w, xj).)

Split any atom assigned to more than one arc into two or more atoms, one per assigned arc, each of size
equal to the amount of the original atom assigned to the arc. Each of the new atoms inherits the assignment
of the corresponding amount of the old atom, as well as the a copy of the stack of the old atom.

For each admissible arc (w, x,), increase f(w, xj) by the sum of the sizes of the atoms assigned to (u!, xj),
and move each such atom to zj, pushing (w, zj) to its stack. If all arcs (w, ar) are now saturated, mark u,
to be blocked. (Do not block w yet.)
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Step 3 (block vertices). Block every vertex marked to be blocked in Step 2.

Step 4 (return flow). For each blocked vertex w (s, t}, in parallel, do the following:

For each atom a at w, let (va,tw) be the top arc on stack(a). Pop stack(a). Decrease f(v,, w) by size(a)
and move a to v.

Step 5 (loop). If every atom is at s or t, stop. Otherwise, go to Step 2.

By using standcard techniques of parallel computation [15], including fast sorting [3], parallel prefix
computations [17], and computations based on complete binary trees (25], one can implement each step
of the algorithm to run in 0(log n) time on an m-processor PRAM. (Lemma 3.1 implies that only m
processors are necessary.) The details are routine and we omit them; the reader can refer to [12, 21] for
more details on how to use these techniques to implement flow algorithms.

The running time of the entire algorithm is then O(n log n) by Corollary 3.3. The space required is

dominated by the space for the paths of atoms, which is 0(nm).

5 Distributed Implementation

The atomic method has a natural implementation in a distributed model of computation, due to the
robustness of the order in which active atoms are processed. By Lemma 3.2, a straightforward im-
plementation of the atomic algorithm on either a synchronous or an asynchronous distributed model
of computation [10] works in 0(n) message-passing rounds using 0(nm) messages. We can thread the

persistent stacks representing the paths through the vertices to obtain an 0(m) space bound per vertex.

Recall that w,: would like to use the blocking flow algorithm as a subroutine in our minimum-cost cir-
culation method [12, 13, 14]. In order to do this, we need to add termination detection to our distriblted
algorithm (so that the processors know when to start the next stage of the minimum-cost circulation
algorithm). The termination detection can be obtained without increasing the asymptotic time bounds
by using the technique of Dijkstra and Scholten [4] for detecting termination of diffusing computations

(a simpler termination detection technique specific to minimum-cost circulation algorithms is discussed
in .02]). The DIjkstra-Scholten technique works for algorithms with a single initiator. This is not a
problem for the blocking flow algorithm described in this paper, since the algorithm is initiated by the
source processor. The version of the problem that comes up in the execution of the minimum-cost
circulation algorithm, however, has several capacitated sources instead of a single uncapacitated source.
Therefore, we need to construct a spanning tree in the network and select a leader before running
the minimum-cost circulation algorithm. Even in the asynchronous model, this preprocessing can be

done in O(nlogn) time, which is dominated by the O(n2 log(nC)) running time of the minimum-cost

circulation algorithm.

Note that the above bounds for distributed computation are not very good from the theoretical
viewpoint. We do just as well by sending all the information about the network to a single vertex
and letting it do all the computation. In practice, however, our distributed algorithm should be more
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efficient than such a centralized computation.

6 Concluding Remarks

In conclusion, we would like to discuss some open questions related to the problems studied in this
paper.

The parallel complexity of the blocking flow problem (in layered, acyclic, and general networks) is
wide open. This problem is not known to be in NC; nor is it known to be P-complete. Resolving either

of these questions seems to be hard. A possibly simpler question is whether an O(n')-time blocking

flow algorithm for 0 < c < 1 exists.

Orlin's minimum-cost circulation algorithm [20], implemented using the best parallel shortest path

algorithm currently known, solves the minimum-cost circulation problem in 0(mlog3 n) time using

n3 /logn processors. Although for most possible values of n,m, and C, this time bound is better

then the time bound achieved by our minimum-cost circulation algorithm discussed in Section 2, our
algorithm is more practical since it uses only m processors.

There are some obvious inefficiencies in our algorithi:.. Though the running time is faster than

that of our sequential algorithm [14] by a factor of mlog(n2/,a)/(nlogn), the total work done by the

algorithm (the product of the running time and the number of processors) is O(n 2 m log n), a factor of

nlogn/log(n2 /m) worse than that of our sequential algorithm. The sequential algorithm uses much

more complicated data structures, however. If only simple data structures are used, the running time

bound of our sequential algorithm increases by a factor of m/(n log(n 2 /rn)). Even then, the total work

done by the parallel algorithm is greater by a factor of (m log n)/n. The atomic method can be improved

by combining atoms that are at the same vertex at the same time and moving them forward together,
thprehv rpdiicina the numiber ,f forward flow pushes. Also, if some of the excess at a vertex v is to

be returned from v, it does not matter which part of the excess is selected for returning, since there is

only one kind of commodity involved. It is easy to design an improved algorithm based on these ideas,

but we have been unable to obtain any improvement in our asymptotic resource bounds by doing so.

The Shiloach-Vishkin result [21] suggests the possible existence of a blocking flow algorithm for acyclic

networks running in O(nlogn) time and 0(n') space uiivg - rocer-'". Finding such an algorithm,

or disproving its existence, is a challenging open problem.
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